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Abstract

Restoring images corrupted by rain streaks is important

for many computer vision applications in outdoor scenes.

Benefiting from the fast inference and excellent feature rep-

resentation capability, deep convolutional neural network-

s (CNN) have achieved significant performance improve-

ment for image deraining and attracted considerable atten-

tion recently. However, for the images with complex back-

ground, the performance of these CNN-based methods is

still unsatisfactory. Addressing this issue, we develop a new

pyramid convolutional neural network, which is composed

of multiple subnets, for image deraining, and name it PDR-

Net. To take full advantage of multi-scale redundancy, the

network decomposes the rainy images into multi-scale sub-

bands via a hierarchical wavelet transform and then pro-

cess them by several sub-networks respectively. In particu-

lar, wavelet transform also plays the role of downsampling

and enlarges the receptive field without increasing depth or

sacrificing efficiency of network. Experimental results show

that our PDRNet can not only achieve promising deraining

performance quantitatively and qualitatively, but also ben-

efit high-level computer vision tasks.

1. Introduction

Undesirable rain streaks are often presented in the im-

ages captured by outdoor equipments and heavily degrade

the visual quality. Moreover, the effects of rain may al-

so severely affect the performance of many outdoor com-

puter vision applications, such as surveillance systems and

unmanned cars. Thus, rain streak removal is an important

problem and has attracted much research interest.

Image deraining is a ill-posed inverse problem and can

be formulated as Y = X + R, where X is the background

(a) (b)

Figure 1. An example of single image de-raining result on real-

world image. (a) Real-world rainy image (b) Our result.

layer, R is the rain streak layer and Y is the image with rain

streaks [13]. The goal of image deraining is to separate the

background X from its corrupted observation Y . Over the

past decades, many approaches have been proposed by ex-

ploring certain prior information on physical characteristics

of rain streak [13, 10, 15, 2, 18]. Kang et al. [10] formulated

rain removal as an image decomposition problem based on

morphological component analysis. Luo et al. [15] exploit-

ed discriminative sparse coding model to solve the problem

and Li et al. [13] developed a Gaussian mixture model to

differentiate rain streaks and background images.

However, these models are generally based on hand-

crafted priors, which may not be strong enough to character-

ize complex image structures. Recently, with the rapid de-

velopment of deep networks, various powerful deep learn-

ing based methods have been proposed for image deraining

[4, 3, 21, 12, 22, 17]. Some approaches [4, 3] focus on

changing the mapping range from input to output for mak-

ing the learning process easier. Some works are dedicated to

exploring a multi-task network. Yang et al. [21] develope-
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d a deep network to jointly detect and remove rain streaks.

Zhang et al. [22] presented a CNN-based method for joint

rain density estimation and de-raining.

Although considerable performance has been achieved

by these learning-based methods, they are still weak in re-

moving large rain streaks in complex background scenes

and differentiating rain streaks from similar image textures

of rain-free background. To address this issue, we devel-

op a pyramid convolutional network which consists of mul-

tiple sub-networks of different scales. In order to fully

exploit the multi-scale redundancy, we apply a hierarchi-

cal wavelet transform to decompose the rainy images into

multi-scale subbands, and then forward them to correspond-

ing sub-networks to remove rain streaks in different scales.

For further improving feature representation capacity and

restoring more image details, the network exploits coarse-

to-fine restoration process by forwarding the features cap-

tured in lower sub-network to higher sub-network. Special-

ly, wavelet transform can be regarded as a special down-

sampling which can enlarge the receptive field of network

without increasing depth.

In summary, this paper makes the following contribu-

tions:

• We propose a pyramid convoluational neural network

for single image deraining, named PDRNet. As shown

in Fig. 1, benefiting from multi-scale redundancy and

well-designed architecture, the PDRNet can promis-

ingly remove rain streaks while preserving texture de-

tails.

• We adopt coarse-to-fine restoration process for better

removing large rain streaks, which is generally more

challenging.

• Considering that the process of deep network may in-

cur the loss of information, we concatenate unpro-

cessed signals with the the derained features periodi-

cally for recovering more details and further enhancing

restoration performance.

• We evaluate our method on both synthetic and real

datasets, and experimental results demonstrate that it

can not only outperform the state-of-the-art methods

quantitatively and qualitatively but also benefit high-

level tasks.

2. Related Work

2.1. Single image deraining

Single image deraining is important for many outdoor

computer vision applications, such as surveillance, pedes-

trian detection and autonomous driving, and has attract-

ed widespread attention. Conventional approaches gener-

ally treated single image de-raining as a signal separation
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Figure 2. The diagram of 2-D discrete wavelet transform (DWT).

problem between rain streaks and rain-free background and

solved the problem by exploiting certain prior knowledge,

such as sparse representation [24], frenquany domain repre-

sentation [10] and Gaussian mixture model [13]. However,

because of the limitations of low-level hand-crafted priors,

the performance of these methods is still unsatisfactory, es-

pecially for the images with complex textures.

Recently, with the development of deep neural network,

many learning based methods have been proposed for s-

ingle image deraining. Fu et al. [3] presented a relative

shallow network with 3 layers to remove rain from indi-

vidual images. Inspired by ResNet [7], Fu et al. [4] fur-

ther developed a deep detail network to learn residual with

the high frequency information to improve the deraining

performance. Yang et al. [21] proposed a deep recurrent

network named JORDER to detect and remove rain streaks

jointly. In [22] the authors presented a novel density aware

multi-stream densely connected convolutional neural net-

work, which can automatically determine the rain-density

information and then efficiently remove the corresponding

rain streaks. To fully exploit hierarchical features and fur-

ther improve deraining performance, some methods [11, 20]

introduced multi-scale model into the deraining network.

2.2. Wavelet transform based image processing

Over the past decades, wavelet transform has been wide-

ly applied in low-level image processing problems, such as

super-resolution [23, 16], denoising [5] and deblocking [8].

Recently, some works proposed to combine the benefit of

wavelet transform with the potential deep neural network.

In [1], a one-layer wavelet transform was adopted to simpli-

fy the topological structures of network’s input. In [14], a

multi-level wavelet based CNN architecture was developed

for image restoration and achieved better trade-off between
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receptive field size and computational efficiency. Yang et al.

[20] embed a hierarchical representation of wavelet trans-

form into a recurrent rain removal process. Compared to

[20], our PDRNet combines original rainy images with de-

rained features for more details, and adopts muli-scale loss

function to mimic coarse-to-fine restoration process.

3. Method

In this section, we first introduce the multi-level wavelet

transform. Subsequently, we present our pyramid convo-

lutional network, which consists of multiple subnets with

different scales, and then describe its network architecture

and multi-scale loss.

3.1. Multi-level wavelet decomposition

Our method is built on 2-D discrete wavelet transfor-

m (DWT) to take the advantage of spatial-frequency lo-

calization. As shown in Fig. 2, the 2-D wavelet de-

composition is performed by first applying 1-D DWT a-

long the rows of the input image I , and then decompos-

ing the acquired results along the columns. As a result,

there are four subbands referred to low-low (LL), low-high

(LH), high-low (HL), and high-high (HH), where the L-

L subband can be regarded as the approximation compo-

nent of the image, while the other subbands can be re-

garded as the detailed components of the image. The

procedure of 2-D wavelet decomposition is formulated as

[LL,LH,HL,HH] = DWT(I), while the inverse opera-

tion is formulated as I = IDWT([LL,LH,HL,HH]).

Specially, for fully exploiting multi-scale redundancy

and well removing all levels of rain streaks, this pa-

per adopts a multi-level wavelet transform to decompose

rainy images into hierarchical subbands: the one-level 2-

D wavelet transform first decompose the image into four

subbands. Then, the two-level DWT decompose the low-

frequency component into four subbands and get four two-

level subbands. Recursively, the results of three or higher

level DWT can be attained.

We note that applying the multi-level DWT to our net-

work has the following advantages. Firstly, the DWT can be

regarded as a special downsampling, and multi-level DWT

can effectively enlarge the receptive field of network with-

out increasing depth or sacrificing efficiency. Moreover, the

size of rain streaks presents strong diversity and the removal

of large rain streaks is usually intractable. With the aid of

multi-level DWT decomposition, the network first shrinks

the signals in lower scales, which makes removing the large

rain streaks easier.

3.2. Proposed pyramid convolutional network

Suppose {Y0, X0} is the rain and rain-free image pair.

In this paper, we adopt a two-level wavelet transform to de-

compose the image into a over-complete hierarchical repre-

sentation, so we have:

[Y LL
1

, Y LH
1

, Y HL
1

, Y HH
1

] = DWT(Y0),

[Y LL
2

, Y LH
2

, Y HL
2

, Y HH
2

] = DWT(Y LL
1

),
(1)

where [Y LL
1

, Y LH
1

, Y HL
1

, Y HH
1

] are the one-level subbands

and [Y LL
2

, Y LH
2

, Y HL
2

, Y HH
2

] are the subbands after two-level

wavelet transform.

As shown in Fig. 3, the proposed network is com-

posed of three sub-networks with different scales and u-

tilizes coarse-to-fine architecture. The network first pro-

cesses the coarsest subbband, which is decomposed by two-

level DWT, to capture the long-range dependencies and then

exploits the finer scale sub-networks to restore more details.

Let F2 denotes the coarsest sub-network. Based on the

assumption that the residual mapping is much easier to be

learned than the original unreferenced one, we adopts resid-

ual learning strategy, and the derained subband of the coars-

est scale is denoted as

X̂LL
2

= F2(Y
LL
2

) + Y LL
2

. (2)

Subsequently, we use zeros to pad other frequency

components (LH, HL, HH) and apply an inverse discrete

wavelet transform (IDWT) on these subbands as upsam-

pling for

X̃LL
1

= H(X̂LL
2
) = IDWT(X̂LL

2
,0,0,0), (3)

so that we can integrate the features of coarsest scale with

the finer ones. Then, the fused signals are forwarded into

the second sub-network F1 for corresponding derained sub-

band

X̂LL
1

= F1([Y
LL
1

, X̃LL
1
]) + Y LL

1
, (4)

where [Y LL
1

, X̃LL
1
] represents the concatenation of the rainy

subband of the corresponding scale and the image recon-

structed from the former sub-network’ output.

Similarly, we perform an IDWT on X̂1

LL
to get

X̃LL
0

= H(X̂LL
1
) = IDWT(X̂LL

1
,0,0.0), (5)

and forward the obtained features and the original rainy im-

age to the third sub-network F0 for final derained image

X̂0 = F0([Y0, X̃
LL
0
]) + Y0. (6)

Fig. 3 shows the architecture of the proposed network.

We use color to differentiate varieties of layers. Inspired by

the potential ResNet [7], our network is based on residual

blocks. Each residual block consists of one residual con-

nection, one parameteric rectified linear unit (PReLU), t-

wo “Conv+BN+PReLU” layers and one “Conv+BN” layer,

in which bypass connection is conducted by elementwise
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Figure 3. The architecture of the proposed PDRNet.

summation for alleviating gradient vanishing problem. Spe-

cially, in order to enrich feature representation and forward

more details, we add feature maps concatenation at the fron-

t of each sub-network to integrate the derained features of

coarser scale to the finer subbands. The network configura-

tion details are presented in Table 1, where h and w depend

on the size of the image to derain.

3.3. Multi-scale loss function

We propose a multi-scale loss to direct the network’s

training so that the reconstructed image can retain both s-

mall details on finer scales and long-range dependencies

on coarser scales. Given the set of rainy-clean pairs S =
{(Y0;X0)} , where Y0(i) is the ith image to derain and

X0(i) represents the corresponding ground-truth image, the

loss function is defined as:

L(Θ) =
1

2N

N∑

i=1

(
α
∥∥∥XLL

2
(i)− X̂

LL
2
(i)

∥∥∥
2

F

+ β
∥∥∥XLL

1
(i)− X̂

LL
1
(i)

∥∥∥
2

F

+ γ
∥∥∥XLL

0
(i)− X̂

LL
0
(i)

∥∥∥
2

F

.

(7)

Here X
LL
1
(i), X

LL
2
(i) are the subbands obtained from

ground-truth X
LL
0
(i) via DWT. X̂

LL
0
(i), X̂

LL
1
(i) and

X̂
LL
2
(i) are the outputs of corresponding sub-networks

when deraining Y0(i), and Θ is the set of network param-

eters. α, β and γ are the weights for different scales and

the weight γ for the final image is generally bigger than the

others. In this paper, they are empirically set to 0.5, 0.5 and

1, respectively.

4. Experimental Results

4.1. Datasets and evaluation criteria

We evaluate the performance of our proposed PDRNet

on both synthetic and real-world data. For synthetic data,

we use two benchmark datasets: 1) Rain100L [21]: There

are 1800 images for training plus 100 images for testing.

In Rain100L, the rainy images are synthesized with only

one type of rain streaks. 2) Rain100H [21]: Compared

to Rain100L, it is more challenging, which is synthesized

by large rain streaks with five directions. As Rain100L,

it also includes 1800 images for training and 100 images

for testing. For real-world data, some of them are collected

from the Internet and some are from the released images of
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Table 1. Detailed configuration of PDRNet.

Sub-Network Layer Kernerl Size Filter Number Input Size Output Size

Sub-network1

Conv 3 × 3 128 h/4 × w/4 h/4 × w/4

Residual Block







3× 3

3× 3

3× 3





 128 h/4 × w/4 h/4 × w/4

Residual Block







3× 3

3× 3

3× 3





 128 h/4 × w/4 h/4 × w/4

Conv 3 × 3 3 h/4 × w/4 h/4 × w/4

Inverse DWT - - h/4 × w/4 h/2 × w/2

Sub-network2

Conv 3 × 3 128 h/2 × w/2 h/2 × w/2

Residual Block







3× 3

3× 3

3× 3





 128 h/2 × w/2 h/2 × w/2

Residual Block







3× 3

3× 3

3× 3





 128 h/2 × w/2 h/2 × w/2

Conv 3 × 3 3 h/2 × w/2 h/2 × w/2

Inverse DWT - - h/2 × w/2 h × w

Sub-network3

Conv 3 × 3 128 h × w h × w

Residual Block







3× 3

3× 3

3× 3





 128 h × w h × w

Residual Block







3× 3

3× 3

3× 3





 128 h × w h × w

Residual Block







3× 3

3× 3

3× 3





 128 h × w h × w

Residual Block







3× 3

3× 3

3× 3





 128 h × w h × w

Conv 3 × 3 3 h × w h × w

[22] and [21].

For the experiments on synthesized data, two metrics

Peak Signal-to-Noise Ratio (PSNR) [9] and Structure Sim-

ilarity Index (SSIM) [19] are used to evaluate the perfor-

mance. Following the existing works [22, 21], we only e-

valuate the results in the luminance channel, which has the

most significant impact on the human visual system. S-

ince the rain-free ground-truth of real-world images are not

available, we only use visual results to compare the perfor-

mance of real-world data.

4.2. Implementation

We set patch size as 120× 120 and batch size as 24. Be-

fore training network, the rainy-clean patch pairs are trans-

formed into multi-level subbands. The loss function in E-

qn. (7) is adopted to train the mapping from rainy images

to the clean ones. We initialize the weights by the method

in [6] and use ADAM algorithm with the default setting to

optimize our network. The learning rate is decayed expo-

nentially from 2× 10−4 to 2× 10−6.

The network is implemented on Pytorch 0.4.1 environ-

ment running on a machine with Intel(R) Xeon(R) E5-

4325



Table 2. Average PSNR(dB)/SSIM results of different methods for single image deraining on datasets Rain100L and Rain100H . We

highlight the best two results in red and blue respectively.

Dataset Metric DSC [15] GMM [13] DDN [4] JORDER [21] DID-MDN [22] PDRNet

Rain100L
PSNR 27.40 28.66 29.36 35.92 30.48 36.30

SSIM 0.8543 0.8653 0.9211 0.9712 0.9323 0.9767

Rain100H
PSNR 14.31 15.05 16.02 25.48 26.35 26.94

SSIM 0.3620 0.4252 0.6398 0.8134 0.8287 0.8577

Figure 4. Visual comparison of our PDRNet with state-of-the-art rain removal algorithms on synthetic rain images. From left to right:

the rainy inputs, derained images by DSC, derained images by DDN, derained images by JORDER, derained images by our PDRNet and

ground-truth. We can observe that our method performs better on restoring details. Please enlarge the figure for more details.

Figure 5. Visual comparison of our PDRNet with state-of-the-art rain removal algorithms on real-world images. From left to right: the

rainy inputs, derained images by DSC, derained images by DDN, derained images by JORDER, and the derained images by our PDRNet.

We can observe that our method achieves the best visualization results. Please enlarge the figure for more details.

2630 CPU 2.40GHz and an Nvidia TITAN Xp GPU. It

takes about 1.5 days for training a deraining model on the

Rain100H or Rain100L training dataset.

4.3. Comparison with the state-of-the-art

To evaluate the performance of the proposed PDRNet,

we compare our method with five state-of-the-art single-
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(a) (b)

(c) (d)

Figure 6. Image recognition results on the images before and after

rain streak removal. (a) Result on rainy image, labelled as wildlife.

(b) Result on our derained image, labelled as giraffe. (c) Result on

rainy image, labelled as Nature (d) Result on our derained image,

labelled as turtle.

image de-raining methods, including discriminative sparse

coding (DSC) [15], GMM-based layer prior (GMM) [13],

deep detail network (DDN) [4], joint rain detection and

removal (JORDER) [21] and density-aware multi-stream

dense network (DID-MDN) [22]. For fair comparision, t-

wo models, one for Rain100H and one for Rain100L, are

trained for each deep learning based method.

Quantitative Evaluation. Table 2 lists the PSNR and

SSIM results of different methods on two synthetic dataset-

s. We note that our proposed PDRNet achieves consider-

able performance in terms of both PSNR and SSIM. In par-

ticular, for the challenging dataset Rain100H with large

rain streaks of various directions, our PDRNet outperforms

the competitive methods JORDER and DID-MDN by about

1.5dB and 0.6dB respectively, while other methods perform

unsatisfactory.

Qualitative Evaluation. Fig. 4 shows visual compar-

isons of rain-streaks removal results on synthesized rainy

images. Fig. 5 presents the results of some real images.

As can be observed, our proposed method shows the best

visual performance on rain-streaks removal, which can not

only recover sharp textures and fine details but also produce

promising perceptual quality in the smooth region.

4.4. Application in computer vision

The effects of rain streaks may heavily affect the per-

formance of many computer vision applications. Specially,

our method can be used as preprocessing to improve the

performance of computer vision applications under rainy

scenes. Fig .6 shows two cases of applying our method as

preprocessing for an advanced image recognition system,

i.e. Clarifai 1. We display the top three recognition result-

s, where green represents the most probable label and yel-

low takes the second place. As can be observed, compared

to direct recognition on the rainy images, the preprocess-

ing can improve the recognition accuracy. Before rain re-

moval, these images are roughly categorized as “Wildlife”

and “Nature”. After preprocessed by our PDRNet, they are

labelled accurately as “Giraffe” and “turtle”, respectively.

5. Conclusion

In this paper, we develop a new pyramid convolutional

network for single image deraining, named PDRNet. A hi-

erarchical wavelet transform is adopted to decompose im-

ages into several subbands with different scales for fully

exploiting the multi-scale redundancy so that the PDRNet

is more effective in removing rain streaks from complex

background. Moreover, the wavelet transform works as

a downsampling operator with better tradeoff between ef-

ficiency and performance by enlarging the receptive field

of network without increasing depth. Experimental results

demonstrate that our method achieves competitive derain-

ing performance and is beneficial to computer vision appli-

cations.
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